Modeling of Production Chains in the Food Industry from the Perspective of System Dynamics for Decision Making A Mapping Review.

Main Article Content

Marcela Guzmán Rincón
ALFREDO GUZMAN RINCON

Resumen

La producción de alimentos es un pilar para el desarrollo social y económico de las naciones. Así, se reconoce que las cadenas productivas de alimentos se enfrentan a importantes desafíos debido a la demanda creciente y factores externos que las pueden afectar. Dicho esto, se reconoce que la producción de alimentos no es un sistema aislado, sino por el contrario es interconectado y altamente complejo, por lo que la dinámica de sistemas como método de modelado ha ganado reconocimiento en el ámbito académico y empresarial debido a su capacidad para modelar sistemas y facilitar la toma de decisiones en lo que respecta en la producción de alimentos. Dado este reconocimiento, el objetivo de este artículo fue identificar y analizar las tendencias de investigación en el modelado de las cadenas productivas alimentarias mediante la dinámica de sistemas, con un enfoque particular en la toma de decisiones. Para el cumplimiento de este objetivo se desarrolló una revisión de mapeo, a partir de la búsqueda y selección de la base de datos SCOPUS. En total la búsqueda y aplicación de los criterios de exclusión generó una muestra de 38 documentos. Los resultados revelaron la tendencia creciente de la cantidad de documentos publicados por años y la notable diversidad geográfica de las investigaciones. Igualmente, se identificaron tres agrupaciones predominantes de la literatura: 1) sostenibilidad y eficiencia de los recursos de las cadenas de suministro, 2) interacción entre los sistemas de agua, energía y alimentos, y 3) aplicación de la dinámica de sistemas a la industria alimentaria. La revisión de mapeo identificó la necesidad de expandir la metodología a una variedad más amplia de problemas dentro de las cadenas productivas de alimentos y la integración de perspectivas multidisciplinarias. Esto permitiría una comprensión más profunda de las interacciones entre diferentes sistemas y la influencia de factores externos.

Descargas

La descarga de datos todavía no está disponible.

Article Details

Cómo citar
Guzmán Rincón, M., & GUZMAN RINCON, A. (2024). Modeling of Production Chains in the Food Industry from the Perspective of System Dynamics for Decision Making. UCJC Business and Society Review (formerly Known As Universia Business Review), 21(81). Recuperado a partir de https://journals.ucjc.edu/ubr/article/view/4682
Sección
Emprendimiento y Estrategia Empresarial

Citas

Abdul, S. S., Admodisastro, N., & Kamaruddin, A. (2015). A study of computer-based learning model for students with dyslexia. 2015 9th Malaysian Software Engineering Conference (MySEC), 284–289. https://doi.org/10.1109/MySEC.2015.7475234
Agudelo, D. A., & López, Y. M. (2018). Dinámica de sistemas en la gestión de inventarios. Ingenierías USBMed, 9(1), 75–85. https://doi.org/10.21500/20275846.3305
Alzubi, E., Shbikat, N., & Noche, B. (2023). A system dynamics model to improving sustainable performance of the citrus farmers in Jordan Valley. Cleaner Production Letters, 4, 100034. https://doi.org/10.1016/j.clpl.2023.100034
Anastasiadis, F., Tsolakis, N., & Srai, J. (2018). Digital Technologies Towards Resource Efficiency in the Agrifood Sector: Key Challenges in Developing Countries. Sustainability, 10(12), 4850. https://doi.org/10.3390/su10124850
Aprillya, M. R., & Suryani, E. (2023). Simulation of System Dynamics for Improving The Quality of Paddy Production in Supporting Food Security. Journal of Information Systems Engineering and Business Intelligence, 9(1), 38–46. https://doi.org/10.20473/jisebi.9.1.38-46
Archip, B. C., Banatean-Dunea, I., Petrescu, D. C., & Petrescu-Mag, R. M. (2023). Determinants of Food Waste in Cluj-Napoca (Romania): A Community-Based System Dynamics Approach. International Journal of Environmental Research and Public Health, 20(3), 2140. https://doi.org/10.3390/ijerph20032140
Armstrong McKay, D. I., Dearing, J. A., Dyke, J. G., Poppy, G. M., & Firbank, L. G. (2019). To what extent has sustainable intensification in England been achieved? Science of The Total Environment, 648, 1560–1569. https://doi.org/10.1016/j.scitotenv.2018.08.207
Bala, B. K., Arshad, F. M., & Noh, K. M. (2017). System Dynamics. Springer Singapore. https://doi.org/10.1007/978-981-10-2045-2
Beard, T. D., Arlinghaus, R., Cooke, S. J., McIntyre, P. B., De Silva, S., Bartley, D., & Cowx, I. G. (2011). Ecosystem approach to inland fisheries: research needs and implementation strategies. Biology Letters, 7(4), 481–483. https://doi.org/10.1098/rsbl.2011.0046
Börner, K., Boyack, K. W., Milojević, S., & Morris, S. (2012). An introduction to modeling science: Basic model types, key definitions, and a general framework for the comparison of process models. En A. Scharnhorst, K. Börner, & P. V. Besselaar. Models of science dynamics - Encounters between complexity theory and information sciences (pp. 3-22). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23068-4_1
Breach, P. A., & Simonovic, S. P. (2018). Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment. Environmental Management, 61(4), 624–636. https://doi.org/10.1007/s00267-018-0997-6
Breach, P. A., & Simonovic, S. P. (2021). ANEMI3: An updated tool for global change analysis. PLOS ONE, 16(5), e0251489. https://doi.org/10.1371/journal.pone.0251489
Campbell, F., Tricco, A. C., Munn, Z., Pollock, D., Saran, A., Sutton, A., White, H., & Khalil, H. (2023). Mapping reviews, scoping reviews, and evidence and gap maps (EGMs): the same but different— the “Big Picture” review family. Systematic Reviews, 12(1), 45. https://doi.org/10.1186/s13643-023-02178-5
Cheng, G., Ning, J., Ahmed, S., Huang, J., Ullah, R., An, B., Hao, H., Dai, M., Huang, L., Wang, X., & Yuan, Z. (2019). Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrobial Resistance & Infection Control, 8(1), 158. https://doi.org/10.1186/s13756-019-0623-2
Chinda, T. (2012). A Dynamic Model of Productivity Enhancement in the Thai Food Industry. Engineering Management Journal, 24(2), 15–29. https://doi.org/10.1080/10429247.2012.11431933
Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65–80. https://doi.org/10.1016/j.biosystemseng.2013.09.006
De La Torre, G., Gruchmann, T., Kamath, V., Melkonyan, A., & Krumme, K. (2019). A System Dynamics-Based Simulation Model to Analyze Consumers’ Behavior Based on Participatory Systems Mapping – A “Last Mile” Perspective. In A. Melkonyan & K. Krumme (Eds.), Innovative Logistics Services and Sustainable Lifestyles (pp. 165–194). Springer International Publishing. https://doi.org/10.1007/978-3-319-98467-4_8
Demartini, M., Tonelli, F., & Govindan, K. (2022). An investigation into modelling approaches for industrial symbiosis: A literature review and research agenda. Cleaner Logistics and Supply Chain, 3, 100020. https://doi.org/10.1016/j.clscn.2021.100020
Dizyee, K., Baker, D., & Rich, K. M. (2017). A quantitative value chain analysis of policy options for the beef sector in Botswana. Agricultural Systems, 156, 13–24. https://doi.org/10.1016/j.agsy.2017.05.007
Doebelin, E. O. (1998). System dynamics: modeling, analysis, simulation, design. Marcel Dekker.
Flandro, C.S., & Petras, M (2005). Model predictive controllers improve temperature control for scraped surface heat exchangers. Technical Papers of ISA, 459, 169-180.
Fontoura, W. B., & Ribeiro, G. M. (2021). System Dynamics for Sustainable Transportation Policies: A Systematic Literature Review. Urbe. Revista Brasileira de Gestão Urbana, 13, e20200259. https://doi.org/10.1590/2175-3369.013.e20200259
Ford, A. (1999). Modeling the environment: An introduction to system dynamics models of environmental systems. Island Press.
Gagliardi, D., Niglia, F., & Battistella, C. (2014). Evaluation and design of innovation policies in the agro-food sector: An application of multilevel self-regulating agents. Technological Forecasting and Social Change, 85, 40–57. https://doi.org/10.1016/j.techfore.2013.10.015
Gao, H., Liu, X., Wei, L., Li, X., & Li, J. (2023). Dynamic simulation of the water-energy-food nexus (WEFN) based on a new nexus in arid zone: A case study in Ningxia, China. Science of The Total Environment, 898, 165593. https://doi.org/10.1016/j.scitotenv.2023.165593
Garcia-Garcia, G., Stone, J., & Rahimifard, S. (2019). Opportunities for waste valorisation in the food industry – A case study with four UK food manufacturers. Journal of Cleaner Production, 211, 1339–1356. https://doi.org/10.1016/j.jclepro.2018.11.269
García-Oliveira, P., Fraga-Corral, M., Pereira, A. G., Prieto, M. A., & Simal-Gandara, J. (2022). Solutions for the sustainability of the food production and consumption system. Critical Reviews in Food Science and Nutrition, 62(7), 1765–1781. https://doi.org/10.1080/10408398.2020.1847028
Gebre, K. T., Wurzinger, M., Gizaw, S., Haile, A., Rischkowsky, B., & Sölkner, J. (2020). Evaluation of increased feed supply and different fattening strategies for an Ethiopian sheep population by system dynamics modelling. Animal Production Science, 60(17), 2050. https://doi.org/10.1071/AN19546
Grisales, N. M., & Restrepo, I. A. M. (2015). modelo para gestionar el conocimiento en el sector textil de Medellín, empleando dinámica de sistemas. Semestre Económico, 18(38), 161–190. https://doi.org/10.22395/seec.v18n38a6
Guzmán, A., Barragán, S., Cosenz, F., & Vitery, F. C. (2023). Prevention and Mitigation of Rural Higher Education Dropout in Colombia: A Dynamic Performance Management Approach. (12:497). F1000Research. https://f1000research.com/articles/12-497
Herrera, M. M., Vargas, L., & Contento, D. (2018). Modeling the Traceability and Recovery Processes in the Closed-Loop Supply Chain and Their Effects. In J. C. Figueroa-García, E. R. López-Santana, & J. I. Rodriguez-Molano (Eds.), Applied Computer Sciences in Engineering (Vol. 915, pp. 328–339). Springer International Publishing. https://doi.org/10.1007/978-3-030-00350-0_28
Horvat, A., Bartelet, H. A., Andersen, D. F., Behdani, B., & Luning, P. A. (2022). Uncovering causes of stagnating product sales of a healthy snack: A system dynamics group model building project in a food processing company. Journal of the Operational Research Society, 73(8), 1667–1681. https://doi.org/10.1080/01605682.2021.1924089
Horvat, A., Fogliano, V., & Luning, P. A. (2020). Modifying the Bass diffusion model to study adoption of radical new foods–The case of edible insects in the Netherlands. PLOS ONE, 15(6), e0234538. https://doi.org/10.1371/journal.pone.0234538
Jagustović, R., Zougmoré, R. B., Kessler, A., Ritsema, C. J., Keesstra, S., & Reynolds, M. (2019). Contribution of systems thinking and complex adaptive system attributes to sustainable food production: Example from a climate-smart village. Agricultural Systems, 171, 65–75. https://doi.org/10.1016/j.agsy.2018.12.008
Kazançoğlu, Y., Ekinci, E., Mangla, S. K., Sezer, M. D., Choudhary, S., & Dora, M. (2023). Smart Closed-Loop Food Supply Chain in Circular Economy. IEEE Transactions on Engineering Management, 1–18. https://doi.org/10.1109/TEM.2023.3303272
Khalil, H., & Tricco, A. C. (2022). Differentiating between mapping reviews and scoping reviews in the evidence synthesis ecosystem. Journal of Clinical Epidemiology, 149, 175–182. https://doi.org/10.1016/j.jclinepi.2022.05.012
Konrad, R. A., Saeed, K., Kammer-Kerwick, M., Busaranuvong, P., & Khumwang, W. (2023). “Fish-y” banks: Using system dynamics to evaluate policy interventions for reducing labor exploitation in the seafood industry. Socio-Economic Planning Sciences, 90, 101731. https://doi.org/10.1016/j.seps.2023.101731
Kopainsky, B., Frehner, A., & Müller, A. (2020). Sustainable and healthy diets: Synergies and trade‐offs in Switzerland. Systems Research and Behavioral Science, 37(6), 908–927. https://doi.org/10.1002/sres.2761
Landriscina, F. (2013). Simulation and Learning A Model-Centered Approach. Springer. https://www.springer.com/gp/book/9781461419532
Minegishi, S., & Thiel, D. (2000). System dynamics modeling and simulation of a particular food supply chain. Simulation Practice and Theory, 8(5), 321–339. https://doi.org/10.1016/S0928-4869(00)00026-4
Minegishi, S., & Thiel, D. (2000). System dynamics modeling and simulation of a particular food supply chain. Simulation Practice and Theory, 8(5), 321–339. https://doi.org/10.1016/S0928-4869(00)00026-4
Moallem, M., Morge, S. P., Narayan, S., & Tagliarini, G. A. (2018). The Power of Computational Modeling and Simulation for Learning STEM Content in Middle and High Schools. En M. Khosrow-Pour. K-12 STEM Education: Breakthroughs in Research and Practice (Vol. 2, pp. 916-950). IGI Global. https://www.igi-global.com/chapter/the-power-of-computational-modeling-and-simulation-for-learning-stem-content-in-middle-and-high-schools/141185
Mobaseri, M., Mousavi, S. N., & Haghighi, M. H. M. (2021). Environmental effects of food waste reduction using system dynamics approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–19. https://doi.org/10.1080/15567036.2021.2000066
Morecroft, J. D. W. (2007). Strategic modelling and business dynamics: A feedback systems approach. John Wiley & Sons.
Mu, J., & Zhu, Q. (2023). Social co-governance for sustainable brand in food industry: dynamic evolutionary game among multiple stakeholders. Journal of Industrial and Management Optimization, 19(10), 7245-7266. https://doi.org/10.3934/jimo.2022261
Nesheim, M.C., Oria, M., & Yih, P.T. (2015). A framework for assessing effects of the food system. A Framework for Assessing Effects of the Food System. National Academies Press.
Perdana, T., Onggo, B. S., Sadeli, A. H., Chaerani, D., Achmad, A. L. H., Hermiatin, F. R., & Gong, Y. (2022). Food supply chain management in disaster events: A systematic literature review. International Journal of Disaster Risk Reduction, 79, 103183. https://doi.org/10.1016/j.ijdrr.2022.103183
Porkka, M., Kummu, M., Siebert, S., & Varis, O. (2013). From Food Insufficiency towards Trade Dependency: A Historical Analysis of Global Food Availability. PLoS ONE, 8(12), e82714. https://doi.org/10.1371/journal.pone.0082714
Queenan, K., Cuevas, S., Mabhaudhi, T., Chimonyo, M., Shankar, B., Slotow, R., & Häsler, B. (2022). A food systems approach and qualitative system dynamics model to reveal policy issues within the commercial broiler chicken system in South Africa. PLOS ONE, 17(6), e0270756. https://doi.org/10.1371/journal.pone.0270756
Robinson, S., Arbez, G., Birta, L. G., Tolk, A., & Wagner, G. (2015). Conceptual modeling: Definition, purpose and benefits. 2015 Winter Simulation Conference (WSC), 2812–2826. https://doi.org/10.1109/WSC.2015.7408386
Sadraei, R., Biancone, P., Lanzalonga, F., Jafari‐Sadeghi, V., & Chmet, F. (2023). How to increase sustainable production in the food sector? Mapping industrial and business strategies and providing future research agenda. Business Strategy and the Environment, 32(4), 2209–2228. https://doi.org/10.1002/bse.3244
Salama, M., Bahsoon, R., & Bencomo, N. (2017). Chapter 11 - Managing Trade-offs in Self-Adaptive Software Architectures: A Systematic Mapping Study. In I. Mistrik, N. Ali, R. Kazman, J. Grundy, & B. Schmerl (Eds.), Managing Trade-Offs in Adaptable Software Architectures (pp. 249–297). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-802855-1.00011-3
Sawyer, A. D. M., Van Lenthe, F., Kamphuis, C. B. M., Terragni, L., Roos, G., Poelman, M. P., Nicolaou, M., Waterlander, W., Djojosoeparto, S. K., Scheidmeir, M., Neumann-Podczaska, A., Stronks, K., & on behalf of the PEN Consortium. (2021). Dynamics of the complex food environment underlying dietary intake in low-income groups: a systems map of associations extracted from a systematic umbrella literature review. International Journal of Behavioral Nutrition and Physical Activity, 18(1), 96. https://doi.org/10.1186/s12966-021-01164-1
Schotten, M., El Aisati, M., Meester, W., Steiginga, S., Ross, C. (2017). A Brief History of Scopus: The World’s Largest Abstract and Citation Database of Scientific Literature. In Cantú-Ortiz F. J (Ed.). Research Analytics. (pp.31–58). Taylor & Francis Group. http://doi.org/10.1201/9781315155890-3
Song, S., Hou, Y., Lim, R. B. H., Gaw, L. Y. F., Richards, D. R., & Tan, H. T. W. (2022). Comparison of vegetable production, resource-use efficiency and environmental performance of high-technology and conventional farming systems for urban agriculture in the tropical city of Singapore. Science of The Total Environment, 807, 150621. https://doi.org/10.1016/j.scitotenv.2021.150621
St. Petersburg State University of Economics, Barabanova, M., Lebedeva, L., St. Petersburg State University of Economics, Rastova, Y., St. Petersburg State University of Economics, Uvarov, S., & St. Petersburg State University of Economics. (2018). Use of system dynamics tools in value-oriented approach in management. Economic Annals-ХХI, 173(9–10), 32–37. https://doi.org/10.21003/ea.V173-05
Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. McGraw-Hill.
Suryani, E., Hendrawan, R. A., Muhandhis, I., & Puspa Dewi, L. (2016). DYNAMIC SIMULATION MODEL OF BEEF SUPPLY CHAIN TO FULFILL NATIONAL DEMAND. Jurnal Teknologi, 78(9). https://doi.org/10.11113/jt.v78.9609
Suryani, E., Hendrawan, R. A., Muhandhis, I., & Puspa, L. (2016). Dynamic simulation model of beef supply chain to fulfill national demand. Jurnal Teknologi, 78(9). https://doi.org/10.11113/jt.v78.9609
Sušnik, J. (2018). Data-driven quantification of the global water-energy-food system. Resources, Conservation and Recycling, 133, 179–190. https://doi.org/10.1016/j.resconrec.2018.02.023
Sušnik, J., Masia, S., Indriksone, D., Brēmere, I., & Vamvakeridou-Lydroudia, L. (2021). System dynamics modelling to explore the impacts of policies on the water-energy-food-land-climate nexus in Latvia. Science of The Total Environment, 775, 145827. https://doi.org/10.1016/j.scitotenv.2021.145827
Tan, C., Erfani, T., & Erfani, R. (2017). Water for Energy and Food: A System Modelling Approach for Blue Nile River Basin. Environments, 4(1), 15. https://doi.org/10.3390/environments4010015
Thiel, D., Le Hoa Vo, T., & Hovelaque, V. (2014). Forecasts impacts on sanitary risk during a crisis: a case study. The International Journal of Logistics Management, 25(2), 358–378. https://doi.org/10.1108/IJLM-04-2012-0028
Tinsley, T. L., Chumbley, S., Mathis, C., Machen, R., & Turner, B. L. (2019). Managing cow herd dynamics in environments of limited forage productivity and livestock marketing channels: An application to semi-arid Pacific island beef production using system dynamics. Agricultural Systems, 173, 78–93. https://doi.org/10.1016/j.agsy.2019.02.014
Tipmontian, J., Kittipongpittaya, K., & Murugesan, R. (2016). Application of material flow cost accounting and system dynamics approach for waste reduction and sustainable food manufacturing development in thailand. Proceedings of the International Conference on Industrial Engineering and Operations Management, 1633-1634.
Tonnang, H. E. Z., Sokame, B. M., Wamalwa, M., Niassy, S., & Muriithi, B. W. (2023). System Dynamics Modeling for Assessing the Impact of COVID-19 on Food Supply Chains: A Case Study of Kenya and Rwanda. Sustainability, 15(6), 4717. https://doi.org/10.3390/su15064717
Toussaint, B., Raffael, B., Angers-Loustau, A., Gilliland, D., Kestens, V., Petrillo, M., Rio-Echevarria, I. M., & Van Den Eede, G. (2019). Review of micro- and nanoplastic contamination in the food chain. Food Additives & Contaminants: Part A, 36(5), 639–673. https://doi.org/10.1080/19440049.2019.1583381
van Raamsdonk, L. W. D., van der Zande, M., Koelmans, A. A., Hoogenboom, R. L. A. P., Peters, R. J. B., Groot, M. J., Peijnenburg, A. A. C. M., & Weesepoel, Y. J. A. (2020). Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods, 9(1), 72. https://doi.org/10.3390/foods9010072
Vo, T.L.H., Thiel, D., & Hovelaque, V. (2010). Dimensioning of perishable product buffer stock in food push-pull supply chains. 6th International Conference on Simulation and Modelling in the Food and Bio-Industry 2010, FOODSIM 2010,175-179.
Wang, F., Liu, S., Liu, H., Liu, Y., Yu, L., Wang, Q., Dong, Y., Tran, L.-S. P., Sun, J., & Zhao, W. (2022). Scenarios and sustainability of the economy–nitrogen-resource–environment system using a system dynamic model on the Qinghai-Tibet Plateau. Journal of Environmental Management, 318, 115623. https://doi.org/10.1016/j.jenvman.2022.115623
Wang, S., Huang, X., Zhang, Y., Yin, C., & Richel, A. (2021). The effect of corn straw return on corn production in Northeast China: An integrated regional evaluation with meta-analysis and system dynamics. Resources, Conservation and Recycling, 167, 105402. https://doi.org/10.1016/j.resconrec.2021.105402
Wang, X., Dong, Z., & Sušnik, J. (2023). System dynamics modelling to simulate regional water-energy-food nexus combined with the society-economy-environment system in Hunan Province, China. Science of The Total Environment, 863, 160993. https://doi.org/10.1016/j.scitotenv.2022.160993
Wu, L., Elshorbagy, A., Pande, S., & Zhuo, L. (2021). Trade-offs and synergies in the water-energy-food nexus: The case of Saskatchewan, Canada. Resources, Conservation and Recycling, 164, 105192. https://doi.org/10.1016/j.resconrec.2020.105192
Xu, Y., & Szmerekovsky, J. (2017). System dynamic modeling of energy savings in the US food industry. Journal of Cleaner Production, 165, 13–26. https://doi.org/10.1016/j.jclepro.2017.07.093
Zhang, Y., Wan, P., Ma, G., & Pereira Uñate, P. A. (2023). Price, internet penetration and green food industry development: Based on the interaction between demand and supply. PLOS ONE, 18(9), e0289843. https://doi.org/10.1371/journal.pone.0289843
Zhong, R., Xu, X., & Wang, L. (2017). Food supply chain management: systems, implementations, and future research. Industrial Management & Data Systems, 117(9), 2085–2114. https://doi.org/10.1108/IMDS-09-2016-0391